Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 9620, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35688859

RESUMEN

Species Distribution Models are commonly used with surface dynamic environmental variables as proxies for prey distribution to characterise marine top predator habitats. For oceanic species that spend lot of time at depth, surface variables might not be relevant to predict deep-dwelling prey distributions. We hypothesised that descriptors of deep-water layers would better predict the deep-diving cetacean distributions than surface variables. We combined static variables and dynamic variables integrated over different depth classes of the water column into Generalised Additive Models to predict the distribution of sperm whales Physeter macrocephalus and beaked whales Ziphiidae in the Bay of Biscay, eastern North Atlantic. We identified which variables best predicted their distribution. Although the highest densities of both taxa were predicted near the continental slope and canyons, the most important variables for beaked whales appeared to be static variables and surface to subsurface dynamic variables, while for sperm whales only surface and deep-water variables were selected. This could suggest differences in foraging strategies and in the prey targeted between the two taxa. Increasing the use of variables describing the deep-water layers would provide a better understanding of the oceanic species distribution and better assist in the planning of human activities in these habitats.


Asunto(s)
Cachalote , Ballenas , Animales , Bahías , Ecosistema , Océanos y Mares , Agua
2.
PLoS One ; 16(8): e0255667, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34347854

RESUMEN

In habitat modelling, environmental variables are assumed to be proxies of lower trophic levels distribution and by extension, of marine top predator distributions. More proximal variables, such as potential prey fields, could refine relationships between top predator distributions and their environment. In situ data on prey distributions are not available over large spatial scales but, a numerical model, the Spatial Ecosystem And POpulation DYnamics Model (SEAPODYM), provides simulations of the biomass and production of zooplankton and six functional groups of micronekton at the global scale. Here, we explored whether generalised additive models fitted to simulated prey distribution data better predicted deep-diver densities (here beaked whales Ziphiidae and sperm whales Physeter macrocephalus) than models fitted to environmental variables. We assessed whether the combination of environmental and prey distribution data would further improve model fit by comparing their explanatory power. For both taxa, results were suggestive of a preference for habitats associated with topographic features and thermal fronts but also for habitats with an extended euphotic zone and with large prey of the lower mesopelagic layer. For beaked whales, no SEAPODYM variable was selected in the best model that combined the two types of variables, possibly because SEAPODYM does not accurately simulate the organisms on which beaked whales feed on. For sperm whales, the increase model performance was only marginal. SEAPODYM outputs were at best weakly correlated with sightings of deep-diving cetaceans, suggesting SEAPODYM may not accurately predict the prey fields of these taxa. This study was a first investigation and mostly highlighted the importance of the physiographic variables to understand mechanisms that influence the distribution of deep-diving cetaceans. A more systematic use of SEAPODYM could allow to better define the limits of its use and a development of the model that would simulate larger prey beyond 1,000 m would probably better characterise the prey of deep-diving cetaceans.


Asunto(s)
Distribución Animal/fisiología , Buceo/fisiología , Conducta Alimentaria/fisiología , Conducta Predatoria/fisiología , Cachalote/fisiología , Animales , Biomasa , Ecosistema , Océanos y Mares , Zooplancton/fisiología
3.
PLoS One ; 8(4): e62180, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23614031

RESUMEN

Ecological indicators for monitoring strategies are expected to combine three major characteristics: ecological significance, statistical credibility, and cost-effectiveness. Strategies based on stranding networks rank highly in cost-effectiveness, but their ecological significance and statistical credibility are disputed. Our present goal is to improve the value of stranding data as population indicator as part of monitoring strategies by constructing the spatial and temporal null hypothesis for strandings. The null hypothesis is defined as: small cetacean distribution and mortality are uniform in space and constant in time. We used a drift model to map stranding probabilities and predict stranding patterns of cetacean carcasses under H0 across the North Sea, the Channel and the Bay of Biscay, for the period 1990-2009. As the most common cetacean occurring in this area, we chose the harbour porpoise Phocoena phocoena for our modelling. The difference between these strandings expected under H0 and observed strandings is defined as the stranding anomaly. It constituted the stranding data series corrected for drift conditions. Seasonal decomposition of stranding anomaly suggested that drift conditions did not explain observed seasonal variations of porpoise strandings. Long-term stranding anomalies increased first in the southern North Sea, the Channel and Bay of Biscay coasts, and finally the eastern North Sea. The hypothesis of changes in porpoise distribution was consistent with local visual surveys, mostly SCANS surveys (1994 and 2005). This new indicator could be applied to cetacean populations across the world and more widely to marine megafauna.


Asunto(s)
Phocoena , Estadística como Asunto , Animales , Europa (Continente) , Dinámica Poblacional , Estaciones del Año
4.
PLoS One ; 7(9): e44425, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984507

RESUMEN

Field surveys have reported a global shift in harbour porpoise distribution in European waters during the last 15 years, including a return to the Atlantic coasts of France. In this study, we analyzed genetic polymorphisms at a fragment of the mitochondrial control region (mtDNA CR) and 7 nuclear microsatellite loci, for 52 animals stranded and by-caught between 2000 and 2010 along the Atlantic coasts of France. The analysis of nuclear and mitochondrial loci provided contrasting results. The mtDNA revealed two genetically distinct groups, one closely related to the Iberian and African harbour porpoises, and the second related to individuals from the more northern waters of Europe. In contrast, nuclear polymorphisms did not display such a distinction. Nuclear markers suggested that harbour porpoises behaved as a randomly mating population along the Atlantic coasts of France. The difference between the two kinds of markers can be explained by differences in their mode of inheritance, the mtDNA being maternally inherited in contrast to nuclear loci that are bi-parentally inherited. Our results provide evidence that a major proportion of the animals we sampled are admixed individuals from the two genetically distinct populations previously identified along the Iberian coasts and in the North East Atlantic. The French Atlantic coasts are clearly the place where these two previously separated populations of harbour porpoises are now admixing. The present shifts in distribution of harbour porpoises along this coast is likely caused by habitat changes that will need to be further studied.


Asunto(s)
Núcleo Celular/metabolismo , ADN Mitocondrial/genética , ADN/genética , Phocoena/genética , Phocoena/fisiología , Análisis de Secuencia de ADN/métodos , Animales , Francia , Variación Genética , Haplotipos , Funciones de Verosimilitud , Repeticiones de Microsatélite/genética , Fenotipo , Polimorfismo Genético , España , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...